Entstanden ist OptAB im Rahmen des vom Ministerium für Wissenschaft und Gesundheit Rheinland-Pfalz geförderten Forschungskollegs data2health, einer Zusammenarbeit zwischen der Universität und der Hochschule Koblenz im Bereich der digitalen, datengetriebenen Medizin.
Individuelle und optimierte Sepsis-Behandlung
OptAB ist das weltweit erste KI-Modell, das eine individualisierte und optimierte Auswahl von Antibiotika bei Sepsis-Patienten ermöglicht. Ziel ist es, den Behandlungserfolg zu maximieren, gemessen am SOFA-Score (einem Indikator für Organversagen), und gleichzeitig schwerwiegende Nebenwirkungen wie Nieren- und Leberschäden zu minimieren. Das Modell berücksichtigt den individuellen Krankheitsverlauf und nutzt dabei patientenspezifische Verlaufsdaten, um vorausschauende Analysen für verschiedene Antibiotika-Kombinationen wie Vancomycin, Ceftriaxon oder Piperacillin/Tazobactam durchzuführen.
SOFA-Score
Der SOFA-Score (Abkürzung für Sequential Organ Failure Assessment) ist ein medizinisches Scoring-System, das zur Bewertung des Schweregrads von Organfunktionsstörungen bei kritisch kranken Patienten verwendet wird, insbesondere bei Sepsis. Er hilft Ärztinnen und Ärzten, die Wahrscheinlichkeit eines Organversagens und die Prognose des Patienten einzuschätzen.
Fortschritt durch KI und Differentialgleichungen
Das OptAB-Modell basiert auf einem innovativen Algorithmus, der neuronale Netzwerke mit Differentialgleichungen kombiniert. Diese Methode erlaubt die Verarbeitung komplexer Patientendaten, die durch unregelmässige Messungen, fehlende Werte und zeitabhängige Störfaktoren gekennzeichnet sind. OptAB liefert dabei präzise Vorhersagen über den Krankheitsverlauf und mögliche Nebenwirkungen, basierend auf Laborwerten wie Kreatinin, Gesamtbilirubin und Alanin-Transaminase.
Verbesserte Behandlungsergebnisse
Die von OptAB ermittelten optimalen Antibiotika-Kombinationen zeigen eine schnellere Wirksamkeit als die in der klinischen Praxis üblichen Breitbandantibiotika. Dies ist besonders relevant, da eine rasche Besserung des Multiorganversagens entscheidend für den Behandlungserfolg ist. Ärzte könnten zukünftig auf die Erfahrungen von zehntausenden Sepsis-Fällen zurückgreifen und durch OptAB fundierte Unterstützung bei ihren Entscheidungen erhalten.
Sepsis – eine lebensbedrohliche Herausforderung
Sepsis, eine schwerwiegende Komplikation von Infektionskrankheiten, ist in Deutschland eine der häufigsten Todesursachen. Täglich sterben im Durchschnitt 160 Menschen an den Folgen von Sepsis. Da die Erreger bei Behandlungsbeginn meist unbekannt sind, greifen Ärzte oft zu Breitbandantibiotika, die jedoch erhebliche Nebenwirkungen wie Nieren- oder Leberschäden mit sich bringen können. OptAB hat das Potenzial, diese Herausforderung grundlegend zu lösen, indem es die Auswahl gezielter und schonender Antibiotika ermöglicht.
Zukunftsperspektiven
Um den vielversprechenden Ansatz von OptAB in die Praxis zu überführen, sind weitere praxisnahe Studien geplant, um die Ergebnisse zu validieren und die Robustheit des Modells zu testen. «Bevor wir das Modell aus der Grundlagenforschung in die Praxis überführen können, müssen wir es nochmals in einem realistischen Umfeld testen», erklärt der Projektleiter Maik Kschischo. «Ohne die medizinische Perspektive der Kooperationspartner Christof Schenkel-Häger und Ingobert Wenningmann hätten wir das Modell nicht entwickeln können», fügt Philipp Wendland hinzu.
OptAB zeigt eindrucksvoll, wie interdisziplinäre Zusammenarbeit zwischen Medizin und Künstlicher Intelligenz zu bahnbrechenden Innovationen führen kann. Mit der Veröffentlichung in «npj Digital Medicine» erfährt das Projekt internationale Anerkennung und ebnet den Weg für eine neue Ära in der individualisierten Sepsis-Therapie.
Originalpublikation
https://pubmed.ncbi.nlm.nih.gov/39613924/, doi: 10.1038/s41746-024-01350-y