Home/Glioblastom: Primärtumor oder Metastase?
imageBild: Pixabay

Glioblastom: Primärtumor oder Metastase?

In einer Studie der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems) wurde untersucht, ob mithilfe von Radiomics und Deep Learning-Algorithmen eine präzise Unterscheidung zwischen Glioblastomen und Hirnmetastasen erzielt werden kann.

KL Krems22.1.20232"
Glioblastom und Hirnmetastasen sind die häufigsten Arten von Hirntumoren bei Erwachsenen. Ihre Behandlung muss grundsätzlich unterschiedlich erfolgen, und eine rasche und klare Diagnose beeinflusst daher den klinischen Erfolg.

Physiometabolische MR liefert grosse Datenmengen
  • Tatsächlich jedoch ist ihre Differenzierung schwierig, da sie sich in klassischen Magnetresonanz (MR)-Aufnahmen kaum unterscheiden.
  • Anders bei physiometabolischer MR, die Stoffwechselvorgänge im Tumorgewebe erfassen kann. Diese jedoch liefert so grosse Datenmengen, dass ein Einsatz in der Routinediagnostik Auswertungen durch Künstliche Intelligenz erforderlich machen würde.
Deren Zuverlässigkeit demonstriert nun ein Team um Prof. Andreas Stadlbauer von der KL Krems anhand eines eigens entwickelten Deep Learning Algorithmus und MR-basierten Daten zum O2-Stoffwechsel der beiden Tumorarten.

Maschine & Mensch
«Tatsächlich gelang es mit unserem Ansatz, bessere Unterscheidungen der Tumorarten zu erreichen als menschliche Experten das im Vergleich erzielen konnten», fasst Prof. Stadlbauer die Ergebnisse der internationalen Studie zusammen. Der Medizinphysiker am Zentralinstitut für medizinische Radiologie-Diagnostik des Universitätsklinikums St. Pölten, Lehr- und Forschungsstandort der KL Krems, führt dazu weiter aus: «In allen wichtigen Unterscheidungskriterien wie Genauigkeit, Sensitivität, Spezifität und Präzision war die Auswertung der MR-basierten Sauerstoffdaten durch unser spezielles neuronales Netzwerk den Radiologen überlegen. Auch bei statistischen Auswertungen wie den F-Werten und dem AUROC war diese Methode besser als die menschlichen Auswertungen.»

«Convolutional Neural Network» (CNN)
Grundlage der Messungen waren dabei ein vom Team eigens entwickeltes «Convolutional Neural Network» (CNN). Dies ist eine Sonderform eines künstlichen neuronalen Netzes, das speziell für maschinelles Lernen und die Verarbeitung von Bild- oder Audiodaten konzipiert wird und Teile biologischer Vorgänge nachempfindet. Im Rahmen der Studie wurde das CNN dann mittels Tumordaten der umfangreichen Datenbank am Universitätsklinikum St. Pölten trainiert und anschliessend zur Analyse von MR-basierten Sauerstoffwerten von neuen Patienten eingesetzt.

Klare Unterscheidung bei wenig Unterschied
Die Sauerstoffwerte, die dabei im Rahmen der Studie erhoben wurden, waren unter anderem der zerebrale Sauerstoffumsatz (CMRO2) sowie die mitochondrialen Sauerstoffsättigung (mitoPO2), die Auskunft über den zellulären Energieumsatz gibt. «Interessanterweise», so Prof. Stadlbauer, «wichen weder der Mittelwert noch der Median dieser beiden Parameter zwischen den beiden Tumorarten wesentlich voneinander ab – aber dennoch gelang unserem CNN eine klare Differenzierung beider Tumorarten.»

Die Studie zeigt das grosse diagnostische Potenzial, das in der Kombination beider Methoden steckt. Tatsächlich aber kommen radiologische Daten des O2-Stoffwechsels im klinischen Alltag noch erst sehr begrenzt zum Einsatz. Prof. Stadlbauer und sein Team möchten dies ändern und planen daher bereits eine umfangreichere Studie, die die jetzt erhobenen Daten nicht nur bestätigen soll, sondern auch Methoden einsetzen wird, die noch enger an der klinischen Routine sind. Dazu Prof. Stadlbauer: «In der jetzigen Studie waren zur Vorbereitung der Datenanalyse noch einige manuelle Schritte notwendig. Für die klinische Routine ist das zu zeitaufwendig und limitiert auch die Vergleichbarkeit zwischen verschiedenen Institutionen. Wir planen daher den Einsatz von CNN auch in dieser Phase.»PS


Rosenbergstrasse 115
8212 Neuhausen am Rheinfall
Telefon: +41 52 675 51 74
info@docinside.ch
www.docinside.ch

Handelsregistereintrag
Firmenname: DOCINSIDE AG
UID: CHE-412.607.286

Über uns
Bankverbindung

Schaffhauser Kantonalbank
8200 Schaffhausen
IBAN: CH76 0078 2008 2797 0810 2

Mehrwertsteuer-Nummer
CHE-412.607.286

Kontakte

Dr. med. Adrian Müller
Betrieb und Inhalte
adrian.mueller@docinside.ch

Dr. med. Richard Altorfer
Inhalte und Redaktion
richard.altorfer@docinside.ch

Dr. med. Christine Mücke
Inhalte und Redaktion
christine.muecke@docinside.ch

Copyright © 2021 Alle Rechte vorbehalten.
Powered by Deep Impact / Spectra